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Abstract
We find a solution of the dark soliton lying on a cnoidal wave background in a
defocusing medium. We use the method of Darboux transformation, which is
applied to the cnoidal wave solution of the defocusing nonlinear Schrödinger
equation. Interesting characteristics of the dark soliton, i.e., the velocity and
greyness, are calculated and compared with those of the dark soliton lying on
a continuous wave background. We also calculate the shift of the crest of the
cnoidal wave along the soliton.

PACS numbers: 05.45.Yv, 05.60.Cg, 42.65.Tg

1. Introduction

Dark solitons are localized holes on a continuous wave (cw) background. There have been
many interesting physical phenomena of dark soliton propagation on a modulationally stable
background. These include temporal dark solitons in optical fibres [1], spatial dark solitons in
waveguides [2] and high-frequency dark solitons in thin magnetic films [3], to name a few. In
particular, optical dark solitons have been investigated in many theoretical and experimental
papers; see the review [4, 5] and references therein. Recent experimental achievements such
as light-induced structured waveguides give rise to a new interest in the application of optical
dark solitons [6–8].

In general, a dark soliton is described by generalized (coupled) nonlinear Schrödinger
equations (NLSEs). Various properties of dark solitons of these equations have been discussed
including soliton stability, dark gap solitons, solitary waves of nonintegrable models, vector
dark solitons and their generalizations by coupled NLSEs [9], and (2 + 1)-dimensional dark
solitons having circular symmetry [10]. In some special but important cases, dark solitons are
described by the integrable nonlinear Schrödinger equation having a normal group velocity
dispersion:

∂z̄ψ = −i∂2
z ψ + 2i|ψ |2ψ, (1)
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where ∂z = ∂
∂z

, ∂z̄ = ∂
∂z̄

, and z̄ ≡ x and z ≡ t − x/vg represent the distance of propagation
along the fibre and (retarded) time. The integrability of the equation admits the use of the
inverse scattering method, which gives a dark soliton solution of

ψ(z, z̄) = p[Btanh{pB(z − vz̄ + 2pAz̄)} + iA] exp(−ivz/2 + 2ip2z̄ + iv2z̄/4), (2)

where parameters A and B are connected by a relation A2 + B2 = 1. In such a form, the dark
soliton solution is characterized by three parameters: p and v describe the amplitude and wave
number of the cw background, while the parameter A (or B) characterizes the dark soliton
itself (so-called greyness).

Considering the potential applicability of the dark solitons, it is desirable to have a more
generalized form of dark soliton solutions having more parameters. This would give more
freedom in controlling solitons in a given environment. One possible scheme in this direction
is to use a fluctuating cw background instead of the plane cw background used in equation
(2). It is well known that integrable nonlinear equations have fluctuating cw solutions called
cnoidal waves. The integrability also guarantees the existence of a solution of type ‘soliton +
cnoidal wave’. In this paper, we construct a dark soliton moving on a cnoidal wave background
in a defocusing medium. In fact, there arise new interests on these types of solutions which
are needed, for example, in describing localized states in optically induced refractive index
gratings [6–8].

To find a solution of the required form, we employ a simple but very powerful soliton
finding technique based on the Darboux transformation (DT) [11–13]. This method is
essentially equivalent to the inverse scattering method (ISM) but avoids the mathematical
technicalities of the ISM. Section 2 introduces a solution of the associated linear equation
of NLSE, which is required in the DT method. Some specific feature in applying the DT
method to equation (1) is explained for the case of plane cw background in section 3. The
plane cw background corresponds to the k → 1 limit of the solution which will be obtained in
section 4. Finally, section 4 calculates the dark soliton solution on a cnoidal wave background.
Interesting characteristics of the found solution are analysed and compared with those of
soliton solutions on a plane cw background in section 5.

2. Sym’s solution

The defocusing nonlinear Schrödinger (DNLS) equation (1) describes light propagation in a
medium whose group velocity dispersion is normal or where waveguide is self-defocusing. It
has the following cnoidal wave solution:

ψc(z, z̄) = −ikp sn(χ + K, k) eiζ , (3)

where χ = p(z − vz̄), ζ = [−vz/2 + p2(1 + k2)z̄ + v2z̄/4],K (K ′ ≡ K(k′)) is a complete
elliptic integral of the first kind and sn is the standard Jacobi elliptic function. v is the
velocity of the cnoidal wave and k ∈ (0, 1) is the modulus of the Jacobi function. As far as
elliptic functions are involved we employ the terminology and notation of [14] without further
explanation. To obtain a superposed ‘soliton + cnoidal wave’ solution using the DT method,
we need to first find a solution of the following linear equations associated with the DNLS
equation (Lax pair):

(∂z + iλ/2)s1 + ψcs2 = 0, (∂z − iλ/2)s2 + ψ∗
c s1 = 0,

(∂z̄ − i|ψc|2 − iλ2/2)s1 − (i∂zψc + λψc)s2 = 0, (4)

(∂z̄ + i|ψc|2 + iλ2/2)s2 + (i∂zψ
∗
c − λψ∗

c )s1 = 0,

where λ is an arbitrary complex number.
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The solution of the linear equation (4) for the cnoidal wave (ψc) was first introduced
by Sym in a different context (description of vortex motion in hydrodynamics) [15]. It was
then applied to NLSE-related problems in [16–18]. A more detailed proof of Sym’s solution
(in a slightly different notation) is given in appendix A of [18]. Sym’s solution in the case
of DNLS equation is obtained from that of [15, 16] (case of focusing NLSE) by taking
p → −ikp, u → ku and k → ik/k′. Sym’s solution for the DNLS case is

s2 = exp(−iζ/2) exp(iγ z̄ + kβχ)
�s(χ − u)

�s(χ)
,

(5)
s1 = ik exp(iζ )

sn(u, k) cn(χ − u, k)

dn(χ − u, k)
s2.

The parameter λ is given by

λ = v/2 − ip
dn(u, k) cn(u, k)

sn(u, k)
, (6)

and γ, β in equation (5) are

γ = p2

2

[
k2 cn2(u, k) +

dn2(u, k)

sn2(u, k)

]
,

β = �′
s(u)

k�s(u)
+

1

2

dn(u, k) cn(u, k)

k sn(u, k)
+

k sn(u, k) cn(u, k)

dn(u, k)
. (7)

Here,

�s(u) = θ4

( iπu

2K ′
)

= 1 + 2
∑

(−)nqn2
cos

( inπu

K ′
)

, (8)

with q = − exp(−πK/K ′).

3. The dark soliton on a plane wave background

A new solution describing a superposed state of ‘soliton + cnoidal wave’ is constructed using
the DT method [11–13] as follows:

ψc−s(z, z̄) = ψc(z, z̄) + 2 Im λ

(
s∗

1

s∗
2

− s2

s1
− εN

s1s
∗
2

)−1

, (9)

where N is an arbitrary constant and ε is a parameter which will be taken as a zero limit
value at the end. Equation (9) is the result of the standard DT except for an auxiliary term
εN , which is needed in the case of a defocusing medium. Using that si satisfy the associated
linear equations in equation (4), it can be explicitly checked that ψc−s in equation (9) is a new
solution of the DNLS equation.

To explain the DT procedure as well as the role of εN term in equation (9), we first
treat the case of the plane wave background. The planes wave is obtained from the cnoidal
wave in equation (3) by taking the limit of k → 1, which gives ψpw = −ip exp(iζpw) =
−ip exp(−ivz/2 + 2ip2z̄ + iv2z̄/4). Using the fact that for k → 1,K → ∞,K ′ → π/2,

�s → 1, we obtain s1, s2 in the plane wave limit as

s2 = exp[−iζpw/2 + iγpwz̄ + βpwp(z − vz̄)], s1 = i exp(iζpw) (tanh u)s2, (10)

where u is a complex parameter related to λ as

λ = v

2
− ip sech u csch u, (11)
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and

γpw = p2

2
(sech2u + csch2u), βpw = 1

2
sech u csch u + tanh u. (12)

Then, the application of DT in equation (9) with ε → 0 gives

ψc−s = −ip
i sin(2 Im u) + sinh(2 Re u)

i sin(2 Im u) − sinh(2 Re u)
exp(iζpw). (13)

Equation (13) is again a plane wave but with a shifted phase and is not the desired type of
‘dark soliton + plane wave’.

To obtain a dark soliton solution, we need to take a special value on Im u such that
u = w − iπ/4 + iε with an arbitrary real w. In this case with the limit of ε → 0, the DT in
equation (9) with N = 4 sech 2w becomes the well known ‘dark soliton + plane wave’ solution
in equation (2) with A = sech 2w,B = tanh 2w. We note that (with u = w − iπ/4 + iε)

Im λ = −8εp
sinh(2w)

cosh(4w) + 1
+ O(ε2),

(14)
|s1|2 − |s2|2 = −4ε sech(2w) exp{2βpwp(z − vz̄)} + O(ε2).

Thus, the three terms in equation (9), i.e., Im λ, s∗
1/s∗

2 − s2/s1 and εN , are of the order of
O(ε1) and gives the dark soliton solution under the limit of ε → 0. This limiting procedure
can be explained more clearly from the viewpoint of vector NLSE; see the appendix.

4. The dark soliton on a cnoidal wave background

As in the case of plane wave background, a new solution using equations (9) and (5) with an
arbitrary complex parameter u is not the type of ‘soliton + cnoidal wave’, but is just a cnoidal
wave shifted along z. To obtain a new solution of the ‘soliton + cnoidal wave’ type, we need
to take a special value on Im u as

u = w + i
K ′

2
+ i

ε

k
, (15)

where w is an arbitrary real parameter, ε is the parameter appearing in equation (9) and
K ′ = K(k′). For this value of u, Im λ in equation (6) becomes

Im λ = 4pε(1 + k)
sn w dn w cn w

(1 + k sn2w)2
+ o(ε2). (16)

Similarly, s1/s2 in equation (5) for the value of u in equation (15) becomes

s1/s2 = − exp(iζ )

(
1 + 2ε

1 − k2 sn2w − k2 sn2Z + k2 sn2w sn2Z

k(1 + k sn2w)(1 − k sn2Z)
+ O(ε2)

)

× {(1 + k) sn w + i cn w dn w}( cn Z + i sn Z dn Z)

(1 + k sn2w)(idn Z − k sn Z cn Z)
, (17)

where Z = χ − w = p(z − vz̄) − w. Note that

|s1/s2|2 = 1 + 4ε
1 − k2 sn2w − k2 sn2Z + k2 sn2w sn2Z

k(1 + k sn2w)(1 − k sn2Z)
+ O(ε2), (18)

such that Im λ, s∗
1/s∗

2 − s2/s1 and εN are of the order of O(ε1). This property is required to
obtain the ‘soliton + cnoidal wave’ solution under the limiting procedure ε → 0; see section 3
and the appendix.
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Figure 1. |ψc−s | shows a dark soliton residing on a cnoidal wave background. The parameters are
v = 0, k = 0.5, p = −1, w = 1, M = 1.

Applying these results to equation (9), we can obtain the ‘soliton + cnoidal wave’ solution

ψc−s = −ikp

{
sn(Z + K − w) exp(iδ) + sn(Z + K + w)

2

− sn(Z + K − w) exp(iδ) − sn(Z + K + w)

2
tanh D

}
exp(iζ ), (19)

where

D = Im γ z̄ − k Re βχ +
1

2
ln

(
M

∣∣∣∣ �s(χ)

�s(Z − iK ′/2)

∣∣∣∣
2 1 − k sn2Z

dn2w − k2 cn2w sn2Z

)
, (20)

M = (1 + k sn2w)N

4
,

Im γ = −2kp2 (1 + k) sn w cn w dn w

(1 + k sn2w)2
,

Re β = Re
�′

s(w + iK ′/2)

k�s(w + iK ′/2)
+ 2

sn w cn w dn w

1 − k2 sn4w
,

(21)

and

exp(iδ) = 1 − 2(1 + k + k2) sn2w + k2 sn4w − 2i(1 + k) sn w dn w cn w

(1 + k sn2w)2
. (22)

Equation (19) is the main result of this paper, describing the dark soliton moving on a cnoidal
wave background.

5. Some characteristics of the solution

Figure 1 shows |ψc−s |, obtained by using equations (19) and (20). It shows the characteristic
dark soliton of DNLS equation where the dark soliton resides on a cnoidal wave background.
The parameters used for figure 1 are v = 0, k = 0.5, p = −1, w = 1,M = 1. This figure is
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Figure 2. Velocity v0
s versus w of a dark soliton for k = 0.5 (solid line) and k = 1 (dashed line).

The parameter is p = −1.

drawn using MATHEMATICA, which is also used to check that the solution in equation (19)
indeed satisfies the DNLS equation (1).

The dark soliton moves along a line given by D = 0 in equation (20). In determining
the moving direction of the soliton, we need a careful treatment of the second term in D of
equation (20). Due to the following quasi-periodicity of the theta function,

�s(z + 2K) = exp(πK/K ′ + πz/K ′)�s(z), (23)

the last term in D can be written in two parts: the first one, which is proportional to χ as
πwχ/(2KK ′) and the second one, which is a periodic function in χ . The first one contributes
to the determination of the moving direction of the soliton, while the second one gives a
wiggling behaviour of the dark soliton along its moving direction. Considering this fact, the
moving direction (from D = 0), or the velocity vs ≡ z/z̄ of the dark soliton, is given by
vs = v + v0

s with (v is the velocity of the cnoidal wave in equation (3))

v0
s = −2kp

(1 + k) sn w cn w dn w

(1 + k sn2w)2

(
Re

�′
s(w + iK ′/2)

�s(w + iK ′/2)
+

2k sn w cnw dn w

1 − k2 sn4w
− πw

2KK ′

)−1

.

(24)

Note that v0
s is a periodic function in w with the periodicity 2K . Figure 2 shows the velocity

v0
s in w for a cnoidal wave background (k = 0.5, solid line) and for a plane wave background

(k = 1, dotted line). It shows that a soliton lying on a cnoidal wave background moves faster
than that lying on a plane wave background. This trend is also seen in figure 3, where we plot
v0

s in k for w = 1, 2, 3. From equation (24), we can find that the fastest velocity vmax for a
given k (in the case of p < 0) is given at w = 0, 2K, 4K, . . ., with

vmax = −2p
(1 + k)k

1 + k − E/K
. (25)

In particular, at k = 0 and k = 1, vmax = −2p. Using numerical calculation, we found that
vmax itself attains its largest value −2.48p (in the case of p < 0) at k = 0.82. On the other
hand, the slowest velocity vmin for a given k (in the case of p < 0) is given at w = K, 3K, . . . ,

which is

vmin = −2p
(1 − k)k

−1 + k + E/K
. (26)

Other special values are v0
s = −2p at k = 0 and v0

s = −2p sech 2w at k = 1 (plane wave).
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Figure 3. Velocity v0
s versus k of a dark soliton for w = 1 (solid line), w = 2 (dotted line), w = 3

(dashed line). k = 1 corresponds to the plane wave background. The parameter is p = −1.
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Figure 4. |ψ | at z̄ = −8 (solid line) and z̄ = 8 (dotted line) shows a dark soliton. They show the
shift of crest at a region around z = 0. The parameters are v = 0, k = 0.5, p = −1, w = 1,M = 1.

Another interesting feature of figure 1 is that the crest of the cnoidal wave shifts constantly
across the dark soliton. As we move away from the soliton such that D → −∞ in
equation (19), we have ψc−s → −ikp sn(Z + K − w) exp(iζ + iδ). Similarly, ψc−s →
−ikp sn(Z + K + w) exp(iζ ) for D → ∞. Thus the shift of crests is 2w. Figure 4 plots |ψ | at
two values of z̄ = −8 (solid line) and 8 (dotted line) using the same parameters used in figure 1.
The centre of the dark soliton for z̄ = −8 lies around z = −13 while it lies around z = 13 for
z̄ = 8. The shift in figure 4 is clearly seen for −5 < z < 5, which is 2w = 2.

During this shift, a dark soliton appears. The intensity of the dark soliton, known as the
greyness, can be seen by studying the coefficient of tanh D in equation (19),

C ≡
∣∣∣∣ sn(Z + K − w) exp(iδ) − sn(Z + K + w)

2

∣∣∣∣
=

∣∣∣∣ (1 + k) sn w dn w cn w

1 + k sn2w

1 − k sn2Z

dn2w − k2 cn2w sn2Z

∣∣∣∣ . (27)
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In particular, C = 0 for w = 0,K for any k. At w = K/2,

C =
√

2(1 + k + k′ + kk′)3/2

(1 + k + k′)2

1 − k sn2Z

1 + k′ − k2 sn2Z
. (28)

The largest value of C is obtained when sn Z = 0, which is

Cmax =
√

2
√

1 + k′(1 + k)3/2

(1 + k + k′)2
. (29)

In particular at k = 1 (plane wave background), Cmax = 1 which means a true dark soliton
can arise. Generally at k �= 1, Cmax < 1 and only grey solitons are arisen on cnoidal wave
backgrounds. The cnoidal wave background makes a dark soliton more grey than the plane
wave background.

6. Conclusion

In this paper, we have introduced a ‘soliton + cnoidal wave’ solution of the DNLS equation.
It was obtained using the DT method and Sym’s solution of the associated linear equation on
a cnoidal wave background. We calculate the moving direction of a soliton on a cnoidal wave
background and the shift of the crest of a cnoidal wave. We also discuss the greyness of the
soliton on a background. These types of solutions, though they can be easily applicable to
the analysis of physically interesting processes, seem rather rare in the literature of physics.
The stability analysis of these solutions remains for future study. In fact, there appear some
numerical studies on this subject (vector NLSE of the defocusing case) [8].
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Appendix. Explanation of equation (9)

In this appendix, we explain the ε → 0 procedure in sections 3 and 4 from the viewpoint of
the vector NLSE:

∂z̄ψi = −i∂2
z ψi + 2i(|ψ1|2 + |ψ2|2)ψi, i = 1, 2. (A.1)

The linear equations to be solved in this case are those of equation (4) augmented with

(∂z − iλ/2)s3 = 0, (∂z̄ + iλ2/2)s3 = 0. (A.2)

In this case, the DT formula giving the ‘soliton + cnoidal wave’ solution is [19, 18]

ψ1,c−s(z, z̄) = ψc(z, z̄) + 2 Im λ
s1s

∗
2

|s1|2 − |s2|2 − |s3|2 ,

ψ2,c−s(z, z̄) = 2 Im λ
s1s

∗
3

|s1|2 − |s2|2 − |s3|2 . (A.3)

Note that the DT formula (A.3) works for any solution si, i = 1, 3, and for any complex-
valued λ. When we take s3 = 0, we obtain a solution for the single-component NLSE (i.e.,
ψ2,c−s = 0), but just with a shifted phase of ψc, as explained in section 3. Instead, we take
s3 = √

εN exp(iλz/2 − iλ2z̄/2) and take Im λ, |s1|2 − |s2|2 are of the order of O(ε1), while
s1, s2 are of the order of O(ε0). Then, the DT formula (A.3) becomes equation (9), which
gives the solutions in sections 3 and 4.
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